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요 약
Consumer products are increasingly becoming dependent on Keyword Spotting (KWS) in order to work effectively. The

present study aims to explore whether image classification techniques could be used to provide accurate and robust keyword
recognition systems on a fixed predefined set of words taken from the Google Speech Command dataset. Additionally, the
present study aims to establish which visual representation of audio is most suitable for CNN classification. After testing
four different visual representations of the audio data, mel-scale decibel spectrograms were found to be the most suitable
representation for learning through Convolutional Neural Networks. Convolutional Neural Networks were able to achieve
near state-of-the-art performance at 89.5% on the test dataset for this KWS classification task. The present study shows that
Convolutional Neural Networks may be able to rival other common models such as RNN-LSTM in recognising keyword
commands. Future study should investigate CNN keyword classification performance on larger vocabulary sets.

1. Introduction

In recent years, command based consumer technology like Ama-

zon Echo, Siri, and Google Now have exploded in popularity. As

such, the ability of technology to accurately identify and decipher

speech commands is increasingly important. As Keyword Spotting

(KWS) technology continues to improve over time, such technol-

ogy could provide a completely hands-free interface to electronics.

This would not only be more convenient than typing by hand, but it

may also facilitate a safer interface with technology when driving

or during an emergency.

Convolutional Neural Networks (CNN) architectures such as

AlexNet[1] and VGG[2] have proven extremely successful for

classifying extremely large image sets. Recent research by scien-

tists at Google[3] has applied a similar architecture to the domain

of audio classification. Their research successfully used large scale

CNN architectures to solve Acoustic Event Detection classification

tasks on the YouTube-100M dataset. This network was capable of

identifying acoustic audio events such as the sounds of specific in-

struments (trumpet, guitar etc.) with high accuracy.

The aforementioned study by Google visualized sound to the

extent that it was suitable for input to CNN by using mel spec-

trograms. Mel spectrograms are representations through a scale of

pitches judged by humans to be equal in distance. Given that the

mel scale is a representation of sound specifically designed to en-

capsulate differences in pitch as determined by human listeners,

this visual representation of sound may be uniquely suited to the

KWS problem. However, various alternative waveform and spec-

trographic representations are possible for this task. Such repre-

sentations which have been used in previous studies include Hertz

frequency spectrographic representations[4], Short-time Fourier

transform (STFT) spectrographic representations, and raw audio

wave signal representations[5].

2. Dataset

This paper utilizes the Google Speech Command Dataset[6].

Originally released by Google in August 2017, this dataset includes

65,000 speech audio samples, taken from thousands of individuals.

Each audio clip is an approximately 1 second long mono WAV

file. The dataset contains 30 command words: bed, bird, cat, dog,

down, eight, five, four, go, happy, house, left, marvin, nine, no, off,

on, one, right, seven, sheila, six, stop, three, tree, two, up, wow, yes,

zero. There are over 1,000 samples for each of the 30 commands,

and background noises have been added to the command samples

to make the dataset more difficult to learn. Dataset sampling rate is

16KHz, and sampling resolution is 16bit. Current state-of -the-art

performance on this dataset is approximately 90.5% according to

the dataset leaderboard on Kaggle[7].

3. Model

This paper uses a similar CNN architecture to Choi and

colleagues’[8] recent CNN, used for music classification. The

CNN architecture used in this paper had four convolutional layers.

Max pooling, relu activation and batch normalization were applied



after the first convolutional layer. Max pooling, elu activation and

dropout of 0.5 were applied after each subsequent convolutional

layer. Flattening was then used to reshape the input into a vector,

which was then passed onto a fully connected layer. Dropout of

0.6 was then applied, followed by softmax for the output activation

layer.

4. Preprocessing

All audio files were resampled to 44100Hz. Four different spec-

trogram representations of each audio file in the dataset were

extracted: STFT amplitude spectrograms, STFT decibel spectro-

grams, mel-scale amplitude spectrograms, and mel-scale decibel

spectrograms. Padding was added so that all audio files were the

same length. All audio preprocessing was done using the librosa

python library[9].

5. Experiment

Four separate models were first trained for 20 epochs, each us-

ing an adadelta optimizer1. Each of these models used a differ-

ent spectrogram representation of the audio files as input. Further

training was then carried out for an additional 80 epochs using

the audio representation which performed best during the initial

experimentation phase. Mini-Batches of size 32 were used dur-

ing both phases of training. Data was divided using roughly a

70%/15%/15% Training/Validation/Test split.

6. Results

In the initial short experimentation phase, all four models

achieved over 80% accuracy on both the training and test datasets

after 20 epochs. Note that in Table 1, the “Train %” column refers

to the combination of both the Training and Validation datasets that

were used during model training. The mel-scale decibel spectro-

gram representations (see Figure 1) had the highest accuracy after

20 epochs. Therefore training was continued using only the model

trained with these spectrograms.

Spectrogram Train% Test%

Mel-scale Decibel 85.2 84.3
Mel-scale Amplitude 83.9 83.4

STFT Decibel 82.1 81.5
STFT Amplitude 82.1 81.9

표 1: Accuracy for each of the four models trained with different spectro-
grams after 20 epochs.

After 100 epochs, the model trained using mel-scale decibel

1) Code for running these experiments can be found at https://github.com/
chrishickey/CNNCommandClassifier

그림 1: Sample of audio file representation used as input for CNN. This
figure gives a sample mel-scale decibel spectrogram of a sample of the
word bed taken from the Google dataset.

spectrograms successfully achieved 90% and 89.5% accuracy on

both the training and test datasets respectively. These results are

very similar to the current state-of-the-art model performance on

this dataset of 90.5%

그림 2: Confusion matrix of true class values and predicted class values
for the test dataset.

When looking at the confusion matrix (see Figure 2) of results

for the test set using the model trained on mel-scale decibel spec-



trograms, some interesting observations can be made. Firstly the

most commonly misclassified words were tree and three. This

makes sense as these two words are extremely similar. Other com-

monly misclassified words were go and no. Again, since these are

two similar sounding, single syllable words, one could reasonably

imagine a human listener also misclassifying these words. As such

this confusion matrix appears to suggest that the misclassifications

produced by the modal are similar to misclassifications that a hu-

man listener may make.

7. Conclusion

The contributions of this paper are as follows:

• Mel-scale decibel spectrogram representations of audio data

are the most suitable visual representations of keyword speech

for training Convolutional Neural Networks.

• Convolutional Neural Networks can be used to provide state-

of-the-art performance on KWS classification tasks with a

small fixed number of keywords.

This current research was performed on a very small sample size

of keywords. Similarly, RNN-LSTM[10] architectures have been

used to solve KWS problems both on the Google Speech Com-

mand dataset and others. Future research should compare how

these two architectures perform as the number of words in the

KWS classification challenge increases. While both architecture

types exhibit excellent performance on datasets with a small num-

ber of words, future research should investigate which architecture

performs best when the vocabulary of possible keywords for clas-

sification expands from 30 to 300 or even 3,000. Moreover, if per-

formance degenerates at scale for one type of network architecture

but not the other, investigating the reasons as to why one architec-

ture is outperforming the other would be an interesting potentially

beneficial avenue of research to explore.
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