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요 약
Motif discovery is a widely studied problem in bioinformatics, used to discover common patterns across divergent biolog-

ical sequences. Gibbs sampling is commonly used to perform motif discovery. However Gibbs sampling is often susceptible
to local maxima issues, meaning that the algorithm may sometimes fail to converge on discovery of the most optimal motif
in a group of biological sequences. The present study shows how by running Gibbs sampling in batches of sequences and
averaging out the results of each batch, consistent motifs can be discovered across separate, independent executions of the
algorithm. This method was shown to be effective, regardless of motif size.

1. Introduction

Gibbs sampling is a Markov Chain Monte Carlo method com-

monly used to simulate distributions that are difficult to sample

from directly. This process has been widely used over the past

number of decades for various use cases from data augmentation

to parameter estimation [1]. However one of the most prominent

use cases of the Gibbs sampling algorithm is the local multiple

sequence alignment problem, aimed at finding protein motifs in

Bioinformatics. Protein sequences are made up of long chains of

amino acids, with each amino acid being denoted by one of the

following 20 characters; A, C, D, E, F, G, H, I, K, L, M, N, P,

Q, R, S, T, V, W, Y. Common patterns found across proteins allow

for insight into molecular function and evolution of biological se-

quences. However divergence of these sequences over time means

finding similarities between sequences is a challenging problem.

Local multiple sequence alignment refers to the problem of finding

short, common patterns of amino acids or other DNA sequences

shared by otherwise dissimilar biological sequences.

The Gibbs sampling algorithm allows for local alignment mo-

tif models for N sequences to be found in N-linear time [2, 3].

However, a notable weakness, which is acknowledged by the orig-

inal authors of the seminal paper on Gibbs sampling, is that the

Gibbs sampling procedure is somewhat susceptible to local max-

ima issues [4]. This means that separate iterations of the Gibbs

sampling algorithm may give different results. The present study

aims to augment the Gibbs sampling method outlined in [2] to pro-

vide more consistent motif discoveries which can be consistently

reproduced across the same group of N-sequences multiple times,

thus providing a better estimate for the best local multiple sequence

alignment motif model for those N-sequences.

2. Method

The present study examines two variants of the Gibbs algo-

rithm1 on three groups of protein sequences; COG1, COG160 and

COG161. This results in a total of N equal to 202 sequences across

these 3 protein categories. Data for these sequences can be found at

[5]. Two variants of the Gibbs sampling algorithm are run against

these sequences in order to find motifs of W length 3, 4 and 5. The

two variants of the algorithm are as follows; the standard Gibbs

sampling algorithm, and the present studies proposed split varia-

tion of the Gibbs sampling algorithm.

The standard Gibbs algorithm as outlined in [2] works as fol-

lows - first a random start position for the motif is chosen for all N

sequences. Then two simultaneous data structures are updated in

order to find the best motifs. The first structure maintains a proba-

bilistic model of the frequencies of each character at each motif po-

sition. The second structure is a set of indices indicating the start-

ing position of the most probable motif in each of the N sequences.

The algorithm then updates these structures iteratively through two

steps - the predictive update step and the sampling step. In the pre-

dictive step, one z sequence of the N sequences is chosen. Then,

the probabilistic model data structure is updated using the follow-

ing equation;

qi,j =
ci,j + bj

N − 1 +B
(1)

where ci,j is the count of character j at position i given the cur-

1) https://github.com/chrishickey/Split_Gibbs



Original Gibbs Split Gibbs

Executions 3-motif 4-motif 5-motif 3-motif 4-motif 5-motif
1st GYH YHGH HGHTH YHG YHGH GYHGH
2nd GYH YIDY MSAIR YHG GYHG YHGHT
3rd YHG ADEV IADEV YHG GYHG GYHGH
4th EPV HGHS GHGHP YHG GYHG GYHGR
5th GYH GGYH GHSHP YHG YHGH GYHGH

표 1: Results showing the most probable motifs found using both original and split Gibbs algorithms.

rent best motif starting position across all sequences, and bj and

B represent both pseudocounts and sum of pseudocounts respec-

tively. The sampling step then considers ever possible motif start-

ing position in sequence z, and probabilistically chooses a start-

ing motif position based on the current qi,j probabilities calculated

from all other sequences. In the present study’s implementation of

the standard Gibbs algorithm, this iterative process was repeated

for 150 iterations.

The proposed split Gibbs algorithm randomly splits the N se-

quences into six roughly equal groups. Next, the standard algo-

rithm outlined above is run multithreaded against each of these six

mini batches for 50 iterations. Models from these six batches are

then combined into one model by averaging out motif character

probabilities across the 6 mini models. This entire process is then

repeated for 25 iterations.

3. Results

The most probable 3, 4 and 5 character motifs found through

5 executions of both the standard and split iterations of the Gibbs

sampling algorithm are summarized in Table 1. While some con-

sistent motif patterns were discovered using the original Gibbs

sampling method, specifically “HGH”, “YHG” and “GYH”, the

large variation of results between different executions of the al-

gorithm indicate that the algorithm was often converging on local

maxima solutions.

Conversely, the split version of the Gibbs sampling algorithm

found the exact same “YHG” motif pattern in all 15 executions

of the algorithm. This consistent pattern of discovering the exact

same 3-character motif or sub-motif across multiple separate ex-

ecutions suggests that the split version of the Gibbs sampling al-

gorithm is better equipped to find consistent global maximums,

discovering a consistent single motif pattern regardless of motif

length.

4. Conclusion

Gibbs sampling is a method widely used in bioinformatics for

motif discovery in partially similar but divergent biological se-

quences. The present study shows how just a small modification

to the standard bioinformatics Gibbs Sampling algorithm can make

a significant contribution to addressing the local maxima problem

and make the algorithm discover consistent motifs across separate

executions of the algorithm. Future studies should investigate the

effectiveness of split Gibbs sanpling across different more chal-

lenging biological sequence sets.

5. Acknowledgements

This work was partly supported by the Institute for Informa-

tion & Communications Technology Promotion (2015-0-00310-

SW. StarLab, 2017-0-01772-VTT, 2018-0-00622-RMI, 2019-0-

01367-BabyMind) and Korea Institute for Advancement Technol-

ogy (P0006720-GENKO) grant funded by the Korea government.

참고문헌

[1] E. A. Suess and B. E. Trumbo, Introduction to probability sim-

ulation and Gibbs sampling with R. Springer Science & Busi-

ness Media, 2010.

[2] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F.

Neuwald, and J. C. Wootton, “Detecting subtle sequence sig-

nals: a gibbs sampling strategy for multiple alignment,” sci-

ence, vol. 262, no. 5131, pp. 208–214, 1993.

[3] S. Kim, Z. Wang, and M. Dalkilic, “igibbs: Improving gibbs

motif sampler for proteins by sequence clustering and iterative

pattern sampling,” Proteins: Structure, Function, and Bioin-

formatics, vol. 66, no. 3, pp. 671–681, 2007.

[4] S. Geman and D. Geman, “Stochastic relaxation, gibbs distri-

butions, and the bayesian restoration of images,” IEEE Trans-

actions on pattern analysis and machine intelligence, no. 6,

pp. 721–741, 1984.

[5] R. L. Tatusov, M. Y. Galperin, D. A. Natale, and E. V. Koonin,

“The cog database: a tool for genome-scale analysis of protein

functions and evolution,” Nucleic acids research, vol. 28, no. 1,

pp. 33–36, 2000.


